EGC220 Class Notes 3/24/2023

Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu

Two-to-one-line multiplexer

MUX 4X1 $\frac{5, 50}{0, 0, 10} = \frac{2}{5} = 5, 50 = \frac{1}{50} + \frac{1}{50} = \frac{$ Z F2 F355

Four-to-one-line multiplexer

Truth Table of an 8 × 3 Encoder

Table 4.7 Truth Table of an Octal-to-Binary Encoder Outputs Inputs D D₂ D B D_7 **P**2 Z ()

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Truth Table of a Priority Encoder

Table 4.8 *Truth Table of a Priority Encoder* Inputs **Outputs** D₀ **D**₁ **D**₂ **D**₃ X y Х Х 0 0 0 0 0 0 0 Х 0 0 Х 0 0 L Х Х Х 1 1 1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Problem 1 Obtain the truth table for an 8 \times 3 priority encoder with inputs $D_0 - D_7$ and output X, Y, Z, V (valid). Do D, D2 D3 D4 D5 D6 D7 $V = D_{1} D_{2} D_{3}$ \mathbf{O} 0 ()00 $D_3 D_2 U_1 D_2$ OO D00 (1) $\bigcirc \bigcirc$ $V = D_7 + D_6 + D_5 + - -$ 00 00 x = D4+D5+ D6+D7 00 XX XX $\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \end{array}$ $Y = D_2 + D_3 + D_6 + D_7$ $Z = D_1 + D_3 + D_7$ $D_5 + D_7$ XXYXX X

